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Abstract

In health and social sciences, it is critically important to identify subgroups of the
study population where a treatment has notable heterogeneity in the causal effects
with respect to the average treatment effect. Data-driven discovery of heterogeneous
treatment effects (HTE) via decision tree methods has been proposed for this task.
Despite its high interpretability, the single-tree discovery of HTE tends to be highly
unstable and to find an oversimplified representation of treatment heterogeneity. To
accommodate these shortcomings, we propose Causal Rule Ensemble (CRE), a new
method to discover heterogeneous subgroups through an ensemble-of-trees approach.
CRE provides (i) an interpretable representation of the HTE, (ii) via an extensive
exploration of complex heterogeneity patterns, while (iii) guaranteeing high stabil-
ity in the discovery. The discovered subgroups are defined in terms of interpretable
decision rules, and we develop a general two-stage approach for subgroup-specific
conditional causal effects estimation, providing theoretical guarantees. Via simula-
tions, we show that the CRE method has a strong discovery ability and a competitive
estimation performance when compared to state-of-the-art techniques. Finally, we
apply CRE to discover subgroups most vulnerable to the effects of exposure to air
pollution on mortality for 35.3 million Medicare beneficiaries across the contiguous
U.S.

Keywords: Causal Inference, Heterogeneous Treatment Effects, Interpretability,
Machine Learning, Air Pollution Epidemiology
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Contribution

This work is based on an idea from Dr. Falco J. Bargagli Stoffi, and it was developed
during my 6 months visiting period at the Department of Biostatistics in the T.H.
Chan Harvard School of Public Health under the supervision of Dr. Bargagli Stoffi,
and as a member of the National Studies on Air Pollution and Health group, directed
by Prof. Dr. Francesca Dominici. I joined the project when a preliminary version of
the Causal Rule Ensemble had already been proposed. However, its formulation and
performances, both in simulation and real-world experiments, still need to be fully
explored.

My first contribution to this project is methodological. I revisited and reorga-
nized the algorithm: simplifying where possible (i.e., estimation step) and further
developing where necessary (i.e., rules generation, rules selection, individual treat-
ment effect estimation). Based on this new formulation of the Causal Rule Ensemble,
I have then introduced the mathematical formulation of the Treatment Effect lin-
ear decomposition for interpretable inference of the heterogeneous treatment effect
(which was still missing). A new draft of the paper, of which I am a co-author, will
be made available on arXiv soon (Bargagli-Stoffi et al.; 2023). My second contri-
bution is to the software. I immediately joined the implementation of the Causal
Rule Ensemble in R, and in November 2022, we released it on CRAN as an R official
package (Khoshnevis et al.; 2023). Full documentation for the package can be found
at https://nsaph-software.github.io/CRE/, and in its corresponding Software
paper (Cadei et al.; 2023) (under review). As of today, I am the main contributor
to this repository, and the package has already been downloaded more than 1,250
times. My last contribution is experimental. I re-designed and enriched the simula-
tion studies, also introducing new evaluation metrics. I then focused on a real-world
application of interpretable inference of the heterogeneous causal effect of fine par-
ticulate matter (PM2.5) exposure on mortality, which is also the main motivation
behind the algorithm. Thanks to the above contributions in both the algorithm and
its implementation, I could scale the analyses to a national scale (35.3 million ob-
servations), extracting meaningful results, partially novel and in agreement with the
existing literature.

Together with Dr. Bargagli Stoffi, we are currently submitting this definitive
Causal Rule Ensemble formulation to a leading journal in the fields of Statistics
and Causal Inference. Based on the positive experience of this visit, I will continue
collaborating with this group for at least until the end of the summer, and we plan
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to extend this work both methodologically and in the applications, as discussed in
the conclusion.
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Chapter 1

Introduction

1.1 Motivating Application

The U.S. Environmental Protection Agency (EPA) has recently set the goal
to achieve environmental justice by addressing the disproportionate vulner-
abilities in adverse human health effects due to exposure to air pollution
(U.S. Environmental Protection Agency; 2022b). According to the EPA, environ-
mental justice is defined as “no group of people should bear a disproportionate bur-
den of environmental harms and risks” (see U.S. Environmental Protection Agency;
2022a, page 116). In the effort to promote environmental justice, the EPA has
called for scientific studies that would inform the understanding of disproportionate
health impacts of air pollution, with particular attention on demographic-specific in-
formation (U.S. Environmental Protection Agency; 2022a). Despite strong evidence
that exposure to air pollution increases the risk of mortality and morbidity (see,
e.g., Schwartz et al.; 2021; Wu, Braun, Schwartz, Kioumourtzoglou and Dominici;
2020; Nethery et al.; 2020; Carone et al.; 2020), little is known about which are the
subgroups—i.e., subsets of the population characterized by a given covariate-profile
(e.g., female individuals, low-income & male individuals)—who are most vulnerable
or resilient to exposure to higher levels of air pollution.

Previous air pollution vulnerability studies are few and limited in their scope. Lee
et al. (2021) and Zorzetto et al. (2023) recently proposed to causally assess exposure
heterogeneity in air pollution via machine learning and Bayesian non-parametric
methodologies, respectively. However, these studies are limited by the scalability
of the employed methods, and their coverage is restricted to selected areas of the
United States—i.e., New England and California. Di et al. (2017) estimated asso-
ciations between long-term exposure to air pollution and mortality rates for pre-
specified population subgroups defined by age, gender, and race categories. Despite
its national coverage, this study has the main limitations of not directly answering a
causal question, but an associational one and providing a very limited heterogeneity
exploration—i.e., heterogeneous associations are estimated just for a predefined and
very limited set of characteristics (e.g., sex, age, race). Thus, in spite of the urgency

1



of a nationwide study that would extensively explore the heterogeneous health effects
of air pollution, a national study on this topic is not yet available.

Furthermore, most analyses on the effects of fine particulate matter (PM2.5) on
human health are conducted at the ZIP code or at the county level. Nevertheless,
such analyses may mask important individual-level sources of heterogeneity and,
most importantly, might expose the results to ecological fallacy (Freedman; 1999).
The ecological fallacy, also known as the ecological inference fallacy or population
fallacy, refers to the incorrect interpretation of results of statistical analyses, where
conclusions about individuals are drawn from inferences made about the group to
which they belong. Such fallacies in air pollution epidemiology studies have been
recently acknowledged (see, e.g., Wu, Netherly, Sabath, Braun and Dominici; 2020).
To our knowledge, no study has yet considered the heterogeneous causal effects of
exposure to air pollution at an individual level.

To goal of our motivating application is to accommodate for this shortcoming and
answer the EPA call by providing nationwide data-driven evidence regarding the most
vulnerable subgroups to exposure to air pollution via an individual-level analysis. In
particular, we aim to develop new methods in causal inference and machine learning
with the goal of identifying de novo which subgroups of the Medicare population are
most vulnerable or resilient to long-term exposure to PM2.5 on mortality.

To do so, we acquired and integrated the data on 35,331,290 Medicare benefi-
ciaries (i.e., individuals 65 years of age or older) across the entire United States for
the period 2010-2016. We consider a binary exposure, indicating whether each in-
dividual has been exposed to PM2.5 greater than 12 µg/m3 or not. This exposure
is the current National Ambient Air Quality Standard (NAAQS) set by the EPA.
We link exposure to two-year annual PM2.5 during 2010-2011 at the zip code level
to mortality during the 5-years period 2012-2016 and several potential confounders,
both at the individual, zip-code, and county level. Our study focuses on explor-
ing the heterogeneity in the causal effects within the four U.S. census geographic
regions—namely, Northeast, Midwest, West, and South—that are often utilized in
investigations related to the impact of air pollution exposure. More details about
the study design and results are illustrated in Chapter 5.

1.2 Contribution and Related Works

The bulk of heterogeneous treatment effect (HTE) literature focuses on two major
tasks (Dwivedi et al.; 2020): (i) estimating HTEs by examining the conditional aver-
age treatment effect (CATE); (ii) discovering subgroups of a population characterized
by HTE.

Seminal works on estimating the CATE rely on nearest-neighbor matching and
kernel methods (Crump et al.; 2008; Lee; 2009). Other non-parametric machine
learning methods such as the random forest (Breiman; 2001) and Bayesian addi-
tive regression tree (BART) (Chipman et al.; 2010) have been extended to estimate
heterogeneity in causal effects—see, e.g., Foster et al. (2011), Hill (2011) and Hahn
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et al. (2020). Wager and Athey (2018) and Athey et al. (2019) developed forest-based
methods for the estimation of HTEs. They also provide an asymptotic theory for the
conditional treatment effect estimators and valid statistical inference. Recently, two-
stage doubly robust CATE estimators have been proposed first to generate doubly-
robust pseudo outcomes and then regress them onto an a priori defined set of effect
modifiers (Kennedy; 2020; Semenova and Chernozhukov; 2021).

Various methodologies have also been proposed to identify subgroups character-
izing the heterogeneity in treatment effects (Imai et al.; 2013; Qian and Murphy;
2011; Kennedy et al.; 2017; Nie and Wager; 2017). Some methods first estimate
the CATE as a function of some set of covariates and then identify heterogeneous
subgroups in a second stage (Foster et al.; 2011; Bargagli-Stoffi et al.; 2020; Hahn
et al.; 2020; Bargagli-Stoffi, De-Witte and Gnecco; 2022). Another approach is the
direct data-driven discovery of heterogeneous subgroups (Wang and Rudin; 2022;
Nagpal et al.; 2020). Many of the methodologies in this category are decision tree-
based methodologies (see, e.g., Athey and Imbens; 2016; Bargagli-Stoffi and Gnecco;
2020; Lee et al.; 2021; Yang et al.; 2021; Bargagli-Stoffi et al.; 2020; Bargagli-Stoffi,
De-Witte and Gnecco; 2022). Tree-based approaches have been widely adopted for
treatment effect heterogeneity due to their appealing features. In fact, these meth-
ods are based on efficient and easily implementable recursive mathematical program-
ming (e.g., maximization in the heterogeneous treatment effects), they can be easily
tweaked and adapted to different scenarios on the basis of the research question of
interest, and they guarantee a high degree of interpretability.

Despite their appealing features, single-tree heterogeneity discovery is character-
ized by two main limitations: (i) instability in the identification of the subgroup,
and (ii) reduced exploration of the potential heterogeneity. Firstly, single-tree-based
subgroup identification is sensitive to variations in the training sample—e.g., if the
data are slightly altered, a completely different set of discovered subgroups might be
found (namely, the model variance is high) (Breiman; 1996; Hastie et al.; 2009; Kuhn
et al.; 2013). Secondly, it may fail to explore a vast number of potential subgroups
(limited subgroup exploration)—e.g., the subgroups discovered are just the ones that
can be represented by a single tree (Kuhn et al.; 2013; Spanbauer and Sparapani;
2021). To illustrate, consider a scenario in which two distinct factors are indepen-
dently contributing to the heterogeneity in treatment effects. In such cases, a single
tree algorithm may detect only one of these factors, failing to identify the second.
In instances where both factors are identified, they are detected sub-optimally as an
interaction between the two variables rather than as distinct drivers of the treatment
heterogeneity.

To account for these shortcomings, we propose a novel Causal Rule Ensemble
(CRE) method that uses multiple trees rather than a single tree to uncover, in a
data-driven way, heterogeneity patterns in the treatment effect via decision rules.
CRE provides (i) an interpretable representation of the HTE, (ii) via an extensive
exploration of complex heterogeneity patterns, while (iii) guaranteeing high stabil-
ity in the discovery. We also develop a general two-stage estimation approach for
the conditional causal effects of the discovered subgroups and provide theoretical

3



guarantees.
CRE ensures interpretability providing a linear decomposition of the HTE in

terms of decision rules. Interpretability is a non-mathematical concept, yet it is often
defined as the degree to which a human can understand the cause of a decision (Kim
et al.; 2016; Miller; 2019; Lakkaraju et al.; 2016; Wang and Rudin; 2022). If-then
decision rules are highly interpretable as they resemble human decision-making pro-
cesses. The discovery of these decision rules is obtained via an extensive exploration
of complex heterogeneity patterns. In particular, CRE generates candidate decision
rules from an ensemble of decision trees extracting heterogeneity in the treatment
effect. Among these candidate decision rules, CRE proposes to extract only a stable
set of decision rules characterizing the HTE by a rework of the stability selection
algorithm (Meinshausen and Bühlmann; 2010). The stability of statistical results
relative to “reasonable” perturbations to data and to the model used is critically
important for reproducible research (Yu; 2013). Next to enhanced reproducibility,
the stability selection algorithm allows also control for finite sample false discovery
error.

Finally, CRE provides a two-stage estimation approach for the estimation of
the coefficients in the discovered linear model of the conditional average treatment
effect. In the first stage, pseudo-outcomes are produced using any of the available
techniques for the estimation of HTE at the individual level. In the second stage,
these pseudo-outcomes are regressed onto the discovered rules. Different subsamples
are used for rules discovery and estimation in the prevention of overfitting (i.e., honest
splitting Athey and Imbens (2016)). We provide theoretical results that guarantee
the consistency and asymptotic normality of the estimated model coefficients. We
also note that the proposed two-stage estimation is similar in spirit (even if the target
estimands are different) to the Double Robust (DR) learner proposed by Kennedy
(2020).

The remainder of the paper is organized as follows. In Chapter 2, we introduce
the potential output framework and interpretable heterogeneous treatment effect
discovery via decision rules. In Chapter 3, we introduce the proposed CRE method-
ology. In Chapter 4, we validate this methodology by simulated experiments, which
are further extended in Appendix A. In Chapter 5, we propose to answer to EPA’s
call for environmental justice, applying the CRE method to assess vulnerability and
resilience from air pollution exposure in the United States. Chapter 6 discusses the
strengths and weaknesses of our proposed approach and areas of future research.
CRE is implemented in an R package available on CRAN. Full documentation for the
package can be found at https://nsaph-software.github.io/CRE/.
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Chapter 2

Problem Formulation

2.1 Potential Outcomes Framework

Let I be a sample of N individuals. For an individual i, with i = 1, ..., N , let
Xi ∈ X ⊆ RP be the set of covariates characterizing i, Zi ∈ {0, 1} be i’s observed
(binary) treatment, and Yi ∈ Y ⊆ R be i’s observed outcome. Following the potential
outcome framework (Rubin; 1974), for each individual, i ∈ I, we define Yi(1) and
Yi(0) as the potential outcomes under treatment and control, respectively; and the
Individual Treatment Effect (ITE):

τi := Yi(1)− Yi(0). (2.1)

The Average Treatment Effect is the expected value of the ITE:

τ̄ := E [Yi(1)− Yi(0)] . (2.2)

The Conditional Average Treatment Effects (CATE) on x is the expected value of
the ITE conditioning over a set of covariates x:

τ(x) := E [Yi(1)− Yi(0)|Xi = x] . (2.3)

Both in ATE and CATE, the expected value is computed over the individuals i if
Yi(Z) is deterministic. If Yi(Z) is random, the average is also computed over any
other randomness. The CATE can be specified at different levels of granularity. For
instance, at the highest level of granularity, one might want to estimate the ITE.
At a lower level of granularity, one might want to estimate the average treatment
effect for some subgroups of the population. This latter estimand can also be referred
to as the Group Average Treatment Effect (GATE) (Jacob; 2019). Both the ITE
and GATE are special cases of CATE. Throughout this paper, we will simply use
the CATE rather than the GATE when referring to the estimated effects in the
subgroups detected by the proposed algorithm.

Since only one potential outcome can be observed for each individual, the fun-
damental problem of causal inference (Holland; 1986), we need to rely on a few
assumptions to identify the causal estimands of interest.
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Assumption 1 (Stable Unit Treatment Value Assumption (SUTVA)).

(i). Yi(Zi) = Yi, ∀i ∈ I
(ii). Yi(Zi) = Yi(Z1, Z2, · · · , Zi, · · · , ZN ) ∀i ∈ I.

SUTVA enforces that for each individual i, i’s outcome is simply a function of i’s
treatment. This is a combination of (i) consistency (no different versions of the
treatment levels assigned to each unit) and (ii) no interference assumption (among
the individuals) (Rubin; 1986).

Assumption 2 (Overlap).

0 < e(x) < 1 ∀ x ∈ X ,

where e(x) = E[Zi = 1|Xi = x] is the propensity score (Rosenbaum and Rubin;
1983).

The overlap assumption states that, for each unit, the probability of receiving either
treatment is bounded away from zero and one.

Assumption 3 (Unconfoundedness).

(Yi(1), Yi(0)) ⊥⊥ Zi |Xi, ∀i ∈ I.

The unconfoundedness assumption states that, for each unit i, the two potential
outcomes depend on Xi, but are independent of Zi conditioning on Xi.

Under Assumptions 1, 2 and 3, the CATE can be identified (i.e., expressed in
terms of statistical estimands) as:

τ(x) = E [Yi|Xi = x, Zi = 1]− E [Yi|Xi = x, Zi = 0] . (2.4)

It is uncertain whether the set of covariates taken into consideration is adequate
for establishing unconfoundedness. If it is not the case, the identification results
do not hold. Sensitivity analysis provides a useful tool to investigate the impact of
unmeasured confounding bias.

2.2 Interpretable Heterogeneity Discovery

Several algorithms have already been proposed for CATE estimation under the above-
mentioned assumptions (i.e., Causal Forest, Bayesian Causal Forest, Inverse Proba-
bility Weighting, Stabilized Inverse Probability Weighting, Augmented Inverse Prob-
ability Weighting, S-Learner, T-Learner, X-Learner, DR-Learner). Although their
powerful convergence property (e.g., double-robustness), interpreting the heterogene-
ity in the function with respect to the covariate space X can be anything but simple.
We define here a new CATE characterization in terms of decision rules in order to
enforce the interpretability of its heterogeneity (Lakkaraju et al.; 2016).
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2.2.1 Decision Rules

A decision rule r is a general function on the covariates’ space X characterizing a
specific subgroup S ⊆ X . We particularly focus on (interpretable) decision rules
whose support (i.e., characterized subgroup) decompose as follows:

S = S1 × · · · × SP (2.5)

where Sp ⊆ R for all p ∈ {1, ..., P}. In formula:

r : X → {0, 1}

x 7→ r(x) :=
P∏

p=1

1(xp ∈ Sp)
(2.6)

In the rest of the paper, we use decision rule referring to this specific definition.

In Figure 2.1, we report a dummy (binary) decision tree to provide a few examples
of decision rules with two binary covariates xF (for female) and xY (for young).
Indeed, each node in a decision tree, combining the conditions of all its ancestors,
agrees with the above definition of decision rule. For instance, the young female
subgroup is expressed by r4(x) = 1(xF = 1) · 1(xY = 1); and the male subgroup is
expressed by r1(x) = 1(xF = 0), where the second term in the product is removed
since equal to 1.

All

Female

Young femaleOld female

xY = 0 xY = 1

Male

xF = 0 xF = 1 Rule Subgroup

r1 xF = 0 Male
r2 xF = 1 Female
r3 xF = 1 & xY = 0 Old female
r4 xF = 1 & xY = 1 Young female

Figure 2.1: An example decision tree (left) and the corresponding decision rules
(right). Note that, in the Causal Rule Ensemble algorithm, for each decision tree,
we consider only the decision rules corresponding to the terminal nodes, in this
example r1, r3 and r4.

2.2.2 Treatment Effect Linear Decomposition

We enforce interpretability in heterogeneous treatment effect estimation relying on
the following assumption:
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Assumption 4 (Treatment Effect Linear Decomposition). Let R = {rm}Mm=1 a set
of decision rules. For each individual i ∈ I, the (individual) treatment effect can be
linearly decomposed as follows:

τi = τ̄ +
M∑

m=1

αm(R) · rm(Xi) + νi (2.7)

where ν is an unobserved and independent additive noise with E[νi] = 0 and Var[νi] =
σ2
i , and αm(R) are the model coefficients.

Assumption 4 states that the (individual) treatment effect can be decomposed in
(i) average effect (ATE), (ii) additive contributions αm(R) for all the activated rules
(we say that a decision rule is activated if evaluated on its support) characterizing
the heterogeneity, and (iii) noise (νi).

In terms of the conditional expectation, Equation 2.7 becomes:

τ(x) = E[τi|Xi = x]

= τ̄ +
M∑

m=1

αm(R) · rm(x) + E[νi]

= τ̄ +
M∑

m=1

αm(R) · rm(x)

(2.8)

and it represents a step-wise approximation of the Conditional Average Treatment
Effect τ(x). It follows the following result:

Proposition 1. If the covariate space X is finite (very common in medical and
health-related applications), then the Treatment Effect linear decomposition Assump-
tion holds.

[See proof in Appendix B]

By definition:

αm(R) := E[Yi(1)− Yi(0)|r1(Xi) = ρ1, ..., rm(Xi) = 1, ..., rM (Xi) = ρM ]

− E[Yi(1)− Yi(0)|r1(Xi) = ρ1, ..., rm(Xi) = 0, ..., rM (Xi) = ρM ]
(2.9)

where ρ1, ..., ρm−1, ρm+1, ..., ρM ∈ {0, 1}. It represents the additive contribution to
the Average Treatment Effect of the rule rm, fixing all the values of all the others
decision rules. For example, setting all the other decision rules to 0:

αm(R) := Ei

Yi(1)− Yi(0)|Xi ∈

x ∈ X :

rm(x) ·
M∏
k=1
k ̸=m

(1− rk(x))

 = 1


− τ̄

(2.10)
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In the rest of the thesis, we refer to the coefficient αm(R) as the Additive Average
Treatment Effect (AATE) of the m-th rule, and for simplicity of language, we remove
its dependency on R.

Assumption 4, can be finally rewritten in a matrix form as:

τ = τ̄ +Rα+ ν (2.11)

where τ ∈ RN is the vector of (unknown) Individual Treatment Effects, R ∈
{0, 1}NxM is the decision rules matrix which element Ri,j = rj(Xi) for all i ∈
{1, ..., N} and j ∈ {1, ...,M}. For example:

R =


r1(·) r2(·) . . . rM (·)

X1 0 1 . . . 0
X2 0 0 . . . 1
...

...
...

. . .
...

XN 1 0 . . . 0

.

τ̄ ∈ R is the Average Treatment Effect, α ∈ RM is the vector of AATEs, and ν ∈ RN

is the vector of heteroscedastic and independent additive noise.
In this framework, interpretable heterogeneous discovery corresponds to finding

a robust and minimal set of decision rules R satisfying Equation 2.7 (either properly
piece-wise approximating if Assumption 4 doesn’t hold), and heterogeneous causal
effect inference corresponds to α (AATEs) estimation.
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Chapter 3

Causal Rule Ensemble

In this chapter, we introduce Causal Rule Ensemble (CRE), a new algorithm for
interpretable inference of heterogeneous causal effects through the linear treatment
effect decomposition by decision rules described in Section 2.2.

Assuming the setup described in Section 2.1, we first divide the observational
dataset into two subsamples: a discovery subsample (Id) and an estimation subsam-
ple (Ie). In the discovery step, we use Id to select the set of decision rules R̂ robustly
describing the heterogeneity in the treatment effect. In the estimation step, we use
Ie to estimate the corresponding linear CATE decomposition in terms of decision
rules. The idea of sample splitting is not new in statistics, and the earliest references
can be traced back to Stone (1974) and Cox (1975). It is now commonly used also in
the HTE literature to prevent overfitting and is referred to as honest splitting (Athey
and Imbens; 2016; Lee et al.; 2021).

Algorithm 1 illustrates the main steps of the proposed methodology. In the rest
of the chapter, we discuss in detail all the steps of the proposed procedure and
its theoretical guarantees. In Section 3.1.1, we complement the discussion on ITE
estimation, comparing 7 different state-of-the-art causal machine-learning algorithms
for the task in Section 3.1.1, noting that the CRE method is agnostic to the choice
of this estimator, both at the discovery and estimation steps.
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Algorithm 1 Causal Rule Ensemble (CRE)

Inputs: covariates matrix X, (binary) treatment vector z, and observed response vector y.
Outputs: (i) a set of interpretable decision rules R̂ = {r̂m}Mm=1,

(ii) ATE ˆ̄τ and AATEs α̂ estimates with confidence intervals.

Procedure:

(Xd,zd,yd), (Xe,ze,ye)← HonestSplitting(X,z,y)

i. Discovery

τ̂ d ← EstimateITE(Xd,zd,yd) ▷ e.g. AIPW, CF, BCF, BART, S/T/X-Learner
R̂′ ← GenerateRules(Xd, τ̂ d) ▷ i.e., tree-ensemble method
R̂ ← RulesSelection(R̂′, Xd, τ̂ d) ▷ Stability Selection

ii. Estimation

τ̂ e ← EstimateITE(Xe,ze,ye) ▷ e.g. AIPW, CF, BCF, BART, S/T/X-Learner
α̂← EstimateAATE(R̂, Xe, τ̂ e) ▷ Linear Decomposition

3.1 Discovery

Discovery is the first step of the Causal Rule Ensemble. It is itself divided into
three steps, with the goal of discovering a stable set of decision rules approximating
the Conditional Average Treatment Effect via Equation 2.11. First, the Individual
Treatment Effect (pseudo-outcome) is estimated by any causal-machine learning al-
gorithm. Secondly, an ensemble of trees algorithm (e.g., random forest) is trained to
discover the heterogeneity in the estimated treatment effects (fit-the-fit), and a set of
candidate decision rules is extracted. Finally, only a robust subset of the proposed
decision rules is selected, based on the stability selection algorithm.

3.1.1 Individual Treatment Effect Estimation

For each individual i ∈ Id, we estimate the corresponding Individual Treatment
Effect τ̂di , relying on Assumption 1-3. Causal Rule Ensemble is model-agnostic with
respect to the used ITE estimators, and any algorithm can be used, leading to
different convergence properties.

We provide here a brief overview of seven ITE estimators, highlighting and com-
paring their strengths and weaknesses. An empirical comparison among the different
methods is reported in Chapter 4.

T-Learner

The T-Learner (Hansotia and Rukstales; 2002) is a two-step approach where the
conditional mean functions:

µ0(x) := Ei[Yi(0)|Xi = x] (3.1)

µ1(x) := Ei[Yi(1)|Xi = x] (3.2)

are estimated separately with any supervised learning algorithm (e.g., Generalized
Linear Model, Tree Ensemble, Neural Network).
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In the first step, the conditional mean under control is estimated by all the
observations in the control group (µ̂0(x)), and the conditional mean under treatment
is estimated by all the observations in the treated group (µ̂0(x)). Then, exploiting
Equation 2.4, the Treatment Effect is estimated by:

τ̂(x) = µ̂1(x)− µ̂0(x) (3.3)

S-Learner

The S-learner (Hill; 2011) treats the treatment variable Zi as if it was just another
covariate like those in the vector Xi. Instead of having two models for the response
as a function of the covariates, the S-learner has a single model for the response as
a function of the covariates and the treatment:

µ(x, z) := Ei[Yi|Xi = x, Zi = z] (3.4)

In the first step, all the observations are used to estimate the response function
above, µ̂(x, z), by any supervised learning algorithm (e.g., Generalized Linear Model,
Tree Ensemble, Neural Network). Then, exploiting Equation 2.4, the Treatment
Effect is estimated by:

τ̂(x) = µ̂(x, 1)− µ̂(x, 0) (3.5)

X-Learner

The X-learner (Künzel et al.; 2019) is a three steps approach, estimating a treatment
effect separately for the control and the treatment group. In the first step, like in
S-Learner, the conditional mean functions:

µ0(x) := Ei[Yi(0)|Xi = x] (3.6)

µ1(x) := Ei[Yi(1)|Xi = x] (3.7)

are estimated separately by any supervised learning algorithm (e.g., Generalized
Linear Model, Tree Ensemble, Neural Network).

The conditional mean under control is estimated by all the observations in the
control group (µ̂0(x)), and the conditional mean under treatment is estimated by
all the observations in the treated group (µ̂0(x)). Secondly, these two estimates are
used for predicting the counterfactual outcomes.

Ψ̂1(Xi) = Yi − µ̂0(Xi) for i : Zi = 1, (3.8)

Ψ̂0(Xi) = µ̂1(Xi)− Yi for i : Zi = 0. (3.9)

Finally, these imputed effects are regressed individually on the covariates to ob-
tain τ̂0(x) (the CATE for the control group) and τ̂1(x) (the CATE for the treatment
group), and then combined by a weight function g ∈ [0, 1]:

τ̂(x) = g(x)τ̂0(x) + [1− g(x)]τ̂1(x) (3.10)

A good choice for g is an estimate of the propensity score.
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Augmented Inverse Probability Weighting (AIPW)

The Augmented Inverse Probability Weighting estimator (Robins et al.; 1994; Robins
and Ritov; 1997) extends the observations balancing of Inverse Probability Weighting
methods (Horvitz and Thompson; 1952) with conditional response estimation of the
S-Learner, inheriting the benefits of both the approaches.

Firstly, the conditional mean response:

µ(x, z) := Ei[Yi|Xi = x, Zi = z] (3.11)

is estimated from all the observations by any supervised learning algorithm, µ̂(x, z)
(first step S-Learner).

Then, the propensity score:

e(x) := Ei[Zi|Xi = x] (3.12)

is estimated from all the observations by any supervised learning algorithm, ê(x).
Finally, the Treatment Effect is computed by:

τ̂(x) =
1

N

∑
i∈I(x)

{(
µ̂(Xi, 1) +

Zi(Yi − µ̂(Xi, 1))

ê(Xi)

)

−
(
µ̂(Xi, 0) +

(1− Zi)(Yi − µ̂(Xi, 0))

1− ê(Xi)

)} (3.13)

where I(x) = {i ∈ I : Xi = x}. By construction, it is only required that one
estimator among ê and µ̂ is unbiased in order to get an unbiased estimate of the
treatment effect.

Causal Forest (CF)

The Causal Forest is a method from Generalized Random Forests (Athey et al.;
2019). Similarly to Random Forest (Breiman; 2001), Causal Forest attempts to
find neighborhoods in the covariate space (recursive partitioning). While a Random
Forest is built from Decision Trees, a Causal Forest is built from Causal Trees (Athey
and Imbens; 2016), which splitting criterion optimizes for finding splits associated
with treatment effect heterogeneity. The goal is to find leaves where the treatment
effect is constant but is different from other leaves.

A Causal Forest is simply the average of a large number of Causal Trees, where
the trees differ due to subsampling. To create a Causal Forest from Causal Trees, it
is necessary to estimate a weighting function and use the resulting weights to solve
a local generalized method of moments (GMM) model to estimate the Conditional
Average Treatment Effect. To deal with overfitting and biased estimations, Causal
Forests, like Causal Rule Ensemble itself, rely on the honesty condition, whereby
each training sample i is only used to decide where to place the split (discovery) or
to estimate the within-leaf treatment effect (estimation), but not both. Honesty con-
dition also leads to asymptotic normality. T he prediction of treatment effects is the
difference in the average outcomes between the treated and the control observations
of the estimating subsample in terminal leaves.
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Causal Bayesian Additive Regression Trees (Causal BART)

The Bayesian Additive Regression Trees (BART) approach (Chipman et al.; 2010)
combines gradient-boosting trees in a Bayesian framing using Markov Chain Monte
Carlo (MCMC) sampling for back fitting (using additive and generalized additive
models for posterior sampling). The Causal Bayesian Additive Regression Trees
(Causal BART) approach (Hill; 2011) relies on such non-parametric Bayesian mod-
els to estimate treatment effects via S-Learner (see Equation 3.5). The method is
specially designed to estimate the Treatment Effect from observational studies with
small effect sizes and heterogeneous effects.

Bayesian Causal Forest (BCF)

The Bayesian Causal Forest (Hahn et al.; 2020) is a state-of-the-art model for causal
inference that builds on Bayesian Additive Regression Trees. BCF combines Bayesian
regularization with regression trees to provide a highly flexible response surface that,
thanks to regularization from prior distributions, does not overfit the training data.
In particular, BCF model the response as a function of the covariates and the treat-
ment, adding the following priors:

µ(x, z) : = Ei[Yi|Xi = x, Zi = z] (3.14)

= µ(x, ê(z)) + τ(x)z (3.15)

where ê(x) is the estimated propensity score and the functions µ(x) and τ(x) are
independent BART priors. The inclusion of the estimated propensity score can
be seen as a covariate-dependent prior to controlling for confounding bias. The
treatment effect is then computed as a S-Learner estimator by Equation 3.5.

3.1.2 Rules Generation

We detect the heterogeneity in the treatment effect by a fit − the − fit approach.
Once the Individual Treatment Effect estimates on the discovery sample are ob-
tained, we fit these estimates (τ̂di ) from the observed covariates (X̂d

i ) by a tree-
ensemble method (i.e., Random Forest (Breiman; 2001), Gradient Boosting Machine
(Friedman; 2001)). In formula:

τ̂di = aggregate(T1(Xd
i ), ..., TT (Xd

i )) ∀i ∈ Id, (3.16)

where Tt represents t-th distinct tree (its structure, its internal and terminal nodes)
and aggregate(·) is an aggregating function (i.e., the mean for regression, the mode
for classification).

Several variants of tree-ensemble methods can be considered, for example modi-
fying the splitting criteria in the forest generation to enforce heterogeneity discovery.
Once the forest is generated, we test, a posteriori, the predictive performance of each
terminal node, comparing an error metric for the model with and without that leaf.
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If the performances drop less than a certain threshold (tdecay), the node is discarded
(pruned) as not significant for prediction (Deng; 2019).

We associate each leaf (terminal node) in the resulting forest with the correspond-
ing decision rule obtained by combining the conditions of all its ancestors. Then,
we collect all the distinct decision rules associated with the leaves in the generated
forest as candidate decision rules for Conditional Average Treatment Effect linear
decomposition (R̂′′). Finally, we discard all the extreme or redundant decision rules
based on the following two criteria:

i. Extreme: A (candidate) decision rule rm ∈ R̂′′ is said extreme if either too
rare: ∑

i∈Id

rm(Xi) ≤ textN
d, (3.17)

or too common: ∑
i∈Id

rm(Xi) ≥ (1− text)N
d, (3.18)

where text is the threshold parameter defining the limit ratio, and Nd = |Id|.

ii. Redundant: A (candidate) decision rule ra ∈ R̂′′ is said redundant if exists
at least another (candidate) decision rule rb ∈ R̂′′ such that their correlation is
greater than a fixed threshold (tcorr).

The filtered set of candidate decision rules R̂′ ⊆ R̂′′ is then given in input to the
rules selection step. By design, the maximal complexity of the candidate decision
rules can be controlled a priori by the maximal length parameter (L) and the other
stopping criteria in the tree-ensemble method. The filtering criteria also results very
useful in practice to preliminary filter irrelevant decision rules and speed up the rules
selection step. In Figure 3.1, we present an example of a tree-ensemble estimate to
visualize the above-described procedure. The generated forest is composed of T = 5
trees and 12 total leaves. They correspond to 11 distinct decision rules (x2 ≥ 0.6 is
double). Among these, we discard all the not significant rules (in light blue) based on
the filtering described above. The remaining 8 leaves in dark blue are the candidate
decision rules given in input to the rules selection.

By default, we propose to combine both Random Forest and Gradient Boosting
Machine (GBM) for rules generation, following the parameters setting described by
Friedman and Popescu (2008) and Nalenz and Villani (2018).

3.1.3 Rules Selection

The number of candidate decision rules M ′ extracted by the rules generation pro-
cedure grows exponentially with the maximal length and linearly with respect to
the number of trees (before filtering). Although the filtering criteria already discard
the not-significant rules, we are not controlling anywhere on the joint stability of
these decision rules (i.e., given variations in the discovery set, these rules might be
replaced with different ones). In order to enforce joint stability in the discovery, we
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Figure 3.1: Visual representation of an example of (simple) rule generation and
selection procedure. Among the 12 leaves, only the decision rules associated with
the 8 leaves in dark blue are considered as candidate decision rules for the rule
selection. The 3 leaves highlighted in red represent the decision rules that are finally
selected by the stability selection procedure.

apply a stability selection regularization procedure to extract only the set of robust
and predictive decision rules in terms of heterogeneity characterization.

We rely on the following penalized regression for rule selection:

min
α

∥τ − (τ̄ +Rα)∥22 + λ ∥α∥l (3.19)

where R is the decision rules matrix, λ is the regularization parameter, and ∥·∥l is
a given norm. We select only the rules whose corresponding AATE estimation is
different from zero. The least absolute shrinkage and selection operator (LASSO)
estimator (Tibshirani; 1996) has been popular and widely used over the past two
decades in order to solve the problem in (3.19) with l = 1.

The usefulness of this estimator among other penalization regression methods is
demonstrated in various applications (see,e.g., Su et al.; 2016; Belloni et al.; 2016;
Chernozhukov et al.; 2016, 2017). In practice, the true individual (and average)
treatment effects are not observed, and we replace them with the corresponding
estimates τ̂ d already computed. We also propose enforcing the discovery of shorter,
thus less complex, decision rules, by weighting the columns of the rules matrix by
the complexity (length) of the corresponding rule:

R̃i,m =
Ri,m

length(rm)
∀i ∈ Id, ∀m ∈ {1, ...,M ′}. (3.20)

Indeed, the same heterogeneity in the treatment effect can be expressed by different
sets of decision rules with different complexity. Weighting the columns of the rules
matrix by the inverse of the length of the rules, we enforce the discovery of shorter,
yet simpler (Bargagli Stoffi, Cevolani and Gnecco; 2022), characterizations.
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When the data is high-dimensional, selecting λ can be challenging and generally
unstable, depending on the unknown level noise of the observations. Stability Se-
lection Meinshausen and Bühlmann (2010) extends this regularization, providing a
procedure to stably extract the set of decision rules characterizing the heterogeneity
of treatment effect, even controlling for the false discovery. Here, we propose to
rework the stability selection procedure as follows.

Let Dd = (τ̂ d, R̂′) the discovery subsample individual treatment effect estima-
tions and candidate decision rule estimates. For each value of λ ∈ Λ, we sample
with replacement B different subsample D(b) of D of size ⌊Nd

2 ⌋ (bootstrapping). For
each subsample D(b) a selection algorithm, e.g., the model in (3.19), is run on D(b)

to obtain a selection set R̂λ
(b) ⊆ R̂′ of decision rules. For each candidate decision

rule rm ∈ R̂′, let πλ
m its probability of being selected by a certain selection algorithm

characterized by :
πλ
m = P{rm ∈ R̂λ}, (3.21)

estimated by:

π̂λ
m =

1

B

B∑
b=1

I{rm ∈ R̂λ
(b)}. (3.22)

Given an estimate of the selection probabilities for each discovered rule and for
each value of λ, we select a stable set of decision rules characterizing heterogeneity
in the treatment effect, selecting all the rules which reached a selection probability
bigger than a certain threshold πthr for at least one value of λ:

R̂ = {rm : max
λ∈Λ

π̂λ
m ≥ πthr} (3.23)

Meinshausen and Bühlmann (2010) discussed that the solution of stability selection
is not sensitive to the initial regularization chosen, which is a desirable feature when
selecting decision rules. The authors also state that the empirical results vary little for
threshold values πthr ∈ (0.6, 0.9). The choice of the set of regularization parameters Λ
is slightly more challenging than the choice of πthr, but it can be explicitly controlled
by an upper bound on the (allowed) per-family error rate (PFER). In addition to
this, controlling for false discoveries is been shown to be of critical importance in
the field of heterogeneous treatment effect discovery (Johnson et al.; 2022; Bargagli-
Stoffi, De-Witte and Gnecco; 2022). By bounding the finite sample probability of
making a Type I error, i.e., the probability of discovering a false positive decision
rule, stability selection allows to control for the discovery of subgroups that are
not likely to substantially contribute to the heterogeneity in the causal effects (we
refer to Meinshausen and Bühlmann; 2010, for further details on the finite sample
properties of the stability selection methodology). In practice, setting πthr together
with an upper bound on the PFER can be very data-dependent, easily leading to
unaccepted combinations. Bodinier et al. (2021) proposes an automated selection of
these parameters coming from the maximization of a stability measure.

In Figure 2.1, we presented an example of an ensemble of trees for rules selection.
Among the eight decision rules associated with the terminal nodes in dark blue, the
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three terminal nodes highlighted in red represent the selected decision rules by the
stability selection procedure.

3.2 Estimation

Once a set of (robust) decision rules R̂ is estimated from the discovery subsample, we
estimate the coefficient of the corresponding treatment effect linear decomposition
on the inference subsample Ie through a two-stage estimation.

3.2.1 Individual Treatment Effect Estimation

First, for each individual i ∈ Ie, we estimate the corresponding Individual Treatment
Effect τ̂ ei , relying on Assumption 1-3. Causal Rule Ensemble is model-agnostic with
respect to the used ITE estimators, and any algorithm can be used, leading to
different convergence properties. Let’s observe that it is not required to use the
same estimator selected in the discovery step, and certain methods could be preferred
to others for one or the other task. For an overview of different successful causal
machine learning algorithms for the task, see Section 3.1.1.

3.2.2 Additive Average Treatment Effect Estimation

Then, relying on Assumption 4:

τ = τ̄ +Rα+ ν, (3.24)

we replace the true individual (and average) treatment effects with estimates just
computed from a consistent estimator:

τ̂ = ˆ̄τ +Rα+ ν, (3.25)

where R is the rules matrix over the estimation subsample using the decision rules
R̂ retrieved in the discovery step, and we removed all the indexing referring to
the estimation subsample for simplicity of language (but we still consider only this
subsample in the whole Section, unless otherwise specified).

We can fit the model described in Equation 3.25 over Ie, and compute an estimate
of the Additive Average Treatment Effects (AATEs) by Ordinary Least Square:

α̂ = (RTR)−1RT (τ̂ − ˆ̄τ). (3.26)

The two-stage Conditional Average Treatment Effect estimate is then given by:

τ̂CRE(x) = ˆ̄τ +
M∑

m=1

α̂m · rm(x) (3.27)
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Equation 3.27 can be used both to compute the CRE estimate of the (individual)
treatment effect over the whole population and also to characterize vulnerable and re-
silient subgroups based on the retrieved decision rules and the corresponding AATEs
magnitude and sign.

Under a few additional assumptions, we prove here the consistency and asymp-
totic properties of the estimator α̂.

Proposition 2. Let τ̂ a consistent estimator for τ (i.e., AIPW). Under the
Treatment Effect linear decomposition Assumption (Condition 1) and assuming
E(RTR) = Q is a positive definite matrix (Condition 2), the Additive Average Treat-
ment Effects estimator α̂ = (RTR)−1RT (τ̂ − ˆ̄τ) is a consistent estimator for α.

[See proof in Appendix B]

Three additional assumptions are required to prove the asymptotic normality of
the estimator α̂:

3. E(R4
ij) < ∞ ∀i ∈ Ie and ∀j ∈ {1, ...,M};

4. E(ν4i ) < ∞ ∀i ∈ Ie;

5. E(ν2i RT
i Ri) = Ω ≻ 0 (positive definite) ∀i ∈ Ie.

where Ri represents the i-th row of the rules matrix R. Since R is a binary matrix,
Condition (3) is satisfied by design. The following theorem represents the asymptotic
distribution of α̂.

Proposition 3. If Conditions (1)-(5) hold, then

√
N(α̂−α)

d→ N (0, V ) as N → ∞ (3.28)

where V = Q−1ΩQ−1.

[See proof in Appendix B]

A variance-covariance matrix estimator V̂ = Q̂−1Ω̂Q̂−1 can be obtained by the
sandwich formula where:

Q̂ =
RTR

N
, (3.29)

Ω̂ =
νTRRTν

N
(3.30)

ν̂ = τ̂ − (ˆ̄τ +Rα) (3.31)

This estimator is robust and often referred to as White’s estimator (White; 1980).
There are other approaches to obtain a heteroscedasticity consistent covariance ma-
trix as discussed in Long and Ervin (2000). For small samples, Efron’s estimator
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(Efron; 1982), known as the HC3 estimator, can be considered alternatively. Also,
if the variance σ2

i is known from the large sample properties of existing methods for
obtaining τ̂ e

i , then feasible generalized least squares estimators (Lewis and Linzer;
2005) can be considered. Given an estimate of the covariance-variance matrix, we
also provide an (asymptotic) confidence interval for each Additive Average Treat-
ments Effect αm.
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Chapter 4

Simulations

To assess the relative performance of CRE, we carried out three simulation studies.
In the first simulation study, we assess the algorithm’s performance in heterogeneity
characterization, retrieving the correct effect modifiers and decision rules. We com-
pare different variants of CRE using different ITE estimators, and we evaluate them
with different magnitudes of the causal effect.

We benchmark their ATE and ITE estimation accuracy in the second simula-
tion study, comparing them with the same ‘standalone’ treatment effect estimators.
We also empirically verify the consistent estimation of the AATEs (Proposition 2).
Both these studies rely completely on the assumptions of CATE identifiability (As-
sumptions 1-3) and linear decomposition (Assumption 4). Several data-generating
processes are considered, varying the confounding mechanism, sample size and the
number and complexity of the rules.

In this chapter, we report the main results of both the analyses; for a complete
overview of the results with all the variant data-generating processes, see Appendix
A. In the last simulation study, we test and discuss the estimation performances in
case the treatment effect linear decomposition assumption doesn’t hold.

4.1 Heterogeneity Discovery

Let I a sample of N = 2, 000 individuals. For each individual i ∈ I, let’s define:

X1
i , ..X

p
i

iid∼ Bernoulli(0.5) and Xi = (X1
i , ..., X

p
i ) (4.1)

Zi ∼ Bernoulli(πi) with πi =
1

1 + e+1−X1
i +X2

i −X3
i

(4.2)

where Xi is the vector of the p = 10 observed (binary) covariates of individual i,
and Zi represents its assigned (binary) treatment. Let us further define the potential
outcomes:

Yi(0) ∼ N (µ0
i , 1) with µ0

i = X1
i +X3

i +X4
i + k · 1{x1=1;x2=0}(Xi) (4.3)

Yi(1) ∼ N (µ1
i , 1) with µ1

i = X1
i +X3

i +X4
i + k · 1{x5=1;x6=0}(Xi) (4.4)
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where k ∈ R represents the magnitude of the causal effect. It follows that the
(unobserved) Treatment Effect of individual i is equal to:

τi = Yi(1)− Yi(0) = −k · 1{x1=1;x2=0}(Xi) + k · 1{x5=1;x6=0}(Xi) + νi (4.5)

where:
νi ∼ N (0, 2) (4.6)

is an additive zero-mean noise. The linear decomposition Assumption (Assumption
4) holds, with M = 2 decision rules, and:

τ̄ = 0, (4.7)

r1(x) = 1{x1=1;x2=0}(x), (4.8)

r2(x) = 1{x5=1;x6=0}(x), (4.9)

α1 = α2 = k, (4.10)

τ(x) = −k · 1{x1=1;x2=0}(x) + k · 1{x5=1;x6=0}(x) (4.11)

=
M∑

m=1

αm · rm(x).

We measure the CRE’s capability in retrieving both the true effect modifiers (i.e.,
x1, x2, x5, x6) and the exact decision rules (i.e., r1, r2) varying the magnitude of the
causal effect (i.e., k). Let S be the set of true effect modifiers (or decision rules) and
Ŝ the set discovered by CRE. We define first:

TP = |Ŝ ∩ S|, (4.12)

FP = |Ŝ − S|, (4.13)

FN = |S − Ŝ|, (4.14)

where TP represents the number of elements properly retrieved, FP represents the
number of elements wrongly retrieved, and FN represents the number of right ele-
ments not retrieved. We can then define:

Recall =
TP

TP + FN
, (4.15)

Precision =
TP

TP + FP
, (4.16)

F1− score = 2
Recall · Precision

Recall + Precision
, (4.17)

where Recall is the ratio of true elements properly retrieved (quantitative perfor-
mance), Precision is the ratio of correct elements retrieved (qualitative perfor-
mance), and the F1-score combines these 2 measures in a harmonic mean. We
consider 7 variants of CRE with the ITE estimators described in Section 3.1.1:
Augmented Inverse Probability Weighting (AIPW), Causal Forest (CF), Bayesian
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Causal Forest (BCF), Causal Bayesian Additive Regression Trees (Causal BART),
S-Learner, T-Learner and X-Learner. For each variant of CRE and causal effect size
k, we compare the mean Recall, Precision and F1− score and their corresponding
95% confidence intervals over 250 Monte Carlo experiments. In Table 4.1, we summa-
rize the Causal Rule Ensemble’s method parameters and the hyperparameters used
for this analysis, where ‘XGboost’ stands for the scalable end-to-end tree-boosting
system algorithm by Chen and Guestrin (2016).

Parameter Value

Honest Splitting Ratio 0.5

Discovery

ITE Estimation
Propensity Score estimator (ê) XGboost
Outcome estimator (µ̂) XGBoost

Rules Generation

N. Trees (Random Forest) 40
N. Trees (GBM) 40
Replace True
Max node (subgroup) size 20
Max depth (L) 3
Max number of nodes (per tree) 23 = 8

Filtering
tdecay 0.025
text 0.01
tcorr 1

Rules Selection
Upper Bound PFER L

k+1

πthr 0.8

Estimation

ITE Estimation
Propensity Score estimator (ê) XGboost
Outcome estimator (µ̂) XGBoost

CATE Estimation tp−value 0.05

Table 4.1: List of CRE method parameters and hyperparameters used for the simu-
lations.

The results are reported in Figure 4.1.

As expected, both effect modifiers retrieval and decision rules retrieval metrics
increase monotonically with respect to the causal effect size k. All the method
variants perform similarly for effect modifiers retrieval, and all the variants reach
almost perfect discovery by k = 3. Decision rule discovery is more challenging due to
the larger hypothesis space. Indeed, in the case of binary covariates (current setting),
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Figure 4.1: Simulation study for heterogeneity discovery results with 2 rules, linear
confounders and 2,000 observations. Mean Precision, Recall and F1-score (lines)
with the corresponding 95% confidence intervals (bands) over 250 Monte Carlo exper-
iments are reported for each method and causal effect size k. For each CRE variant,
the heterogeneity characterization discovery converges (with respect to effect size)
to the true heterogeneity characterization.

the number of possible decision rules is equal to:

L∑
l=1

(
p

l

)
· 2l (4.18)

growing exponentially with maximum rules’ length L. and even more in the setting
of discrete/continuous covariates, depending on the discretization criteria in the rules
generation.

All the method variants perfectly retrieve the true decision rules (Recall = 1)
by k = 3, but a few variants (i.e., CF, BCF, and S-Learner) also keep retrieving
additional redundant rules (Precision ≪ 1) even for k > 3. This drawback can be
addressed by fine-tuning the strength in the Rules Selection step (e.g., increasing
cutoff πthr, or reducing the PFER in the Stability Selection), which we kept constant
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for all the methods for a fair comparison. Causal Rule Ensemble based on Causal
BART, AIPW, T-Learner, and X-Learner for ITE estimation leads to a more stable
and precise rules discovery. In agreement with the literature (Hill; 2011), Causal
Rule Ensemble based on Causal BART works better than any other variants for
small effect sizes.

Consistent results are obtained in varying:

i. the sample size (1,000, 2,000, 5,000);

ii. the number of the decision rules (2, 4);

iii. the complexity of the decision rules (1, 2, 3);

iv. the type of confounding (none, linear, non-linear).

A comprehensive analysis of these additional simulations is reported in Appendix A.

4.2 Heterogeneous Treatment Effect Estimation

The simulation study on the heterogeneous effect estimation follows the same data-
generating process described in Section 4.1. We fix the causal effect size k = 5, large
enough to allow (almost) perfect discovery of all the CRE variants, and we compare
the accuracy in both ITE and ATE estimation. In particular, for each method, we
evaluate the mean and standard deviation Root-Mean-Square Error (RMSE) and
Bias on ITE estimation over 250 Monte Carlo experiments per method, where:

RMSE =

√∑
i∈I(τi − τ̂i)2

N
, (4.19)

Bias =
1

N

∑
i∈I

(τi − τ̂i)
P−→ τ̄ − 1

N

∑
i∈I

τ̂i, (4.20)

and the (ITE) Bias is also representing the bias in the corresponding ATE estimation.
We consider 7 variants of CRE with the following ITE estimators: Causal Forest
(CF), Bayesian Causal Forest (BCF), Causal Bayesian Additive Regression Trees
(Casual BART), S-Learner, T-Learner, and X-Learner; and we compare them with
the same ’standalone’ ITE estimators, which are commonly recognized among the
best-performing algorithms for heterogeneous treatment effect estimation. We report
the results in Table 4.2.

Overall, CRE outperforms the corresponding ‘standalone’ ITE estimators for
both ITE and ATE estimation. In particular, CRE (AIPW), CRE (S-Learner), CRE
(T-Learner), CRE (X-Learner), and CRE (Causal BART) significantly outperform
the corresponding AIPW, S-Learner, T-Learner, X-Learner, Causal BART estima-
tors for ITE estimation, and CRE (BCF) and BCF lead to comparable performances.
CRE (CF) is the unique method worsening the performance of the corresponding
CF estimator. Among the ‘standalone’ ITE estimators, CF and BCF are the two
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RMSE Bias
Method µ σ µ σ

CRE (AIPW) 0.1336 0.0603 0.0016 0.0891
CRE (CF) 0.6269 0.1404 0.0303 0.0957
CRE (BCF) 0.1482 0.0558 0.0047 0.0795

CRE (S-Learner) 0.1494 0.0589 0.0017 0.0860
CRE (T-Learner) 0.1495 0.0649 0.0011 0.0937
CRE (X-Learner) 0.1466 0.0659 0.0010 0.0937

CRE (Causal BART) 0.1398 0.0625 0.0009 0.0816

AIPW 2.0807 0.1919 0.0032 0.0562
CF 0.2955 0.0868 0.0051 0.0541
BCF 0.1339 0.0373 0.0042 0.0522

S-Learner 0.4837 0.0334 0.0020 0.0532
T-Learner 0.8065 0.0373 0.0035 0.0573
X-Learner 1.1878 0.0291 0.0035 0.0573

Causal BART 0.9925 0.0163 0.0020 0.0520

Table 4.2: Simulation study for (heterogeneous) treatment effect estimation, with
M = 2 rules, linear confounder, 2,000 individuals and under CATE linear decompo-
sition assumption. For all the methods, the mean (µ) and standard deviation (σ)
treatment effect root mean squared error (RMSE) and bias (Bias) over 250 Monte
Carlo experiments are reported.

methods with the largest Bias (> 0.04). Our hypothesis is that their correspond-
ing systematic errors in ITE estimation in the CRE discovery step lead to incorrect
heterogeneity characterization, propagating the error at the estimation time.

Among the ‘standalone’ ITE estimators, AIPW is the one with the worst per-
formance in ITE estimation. This result was somehow expected since the AIPW
estimator was designed for (doubly-robust) (G)ATE estimation, while here we are
extending it for ITE estimation (also known as pseudo-outcome in Doubly Robust
literature (Kennedy; 2020)). Pseudo-outcome estimation by AIPW is unstable in
presence of extreme propensity score estimation (êi ≈ 0 or êi ≈ 1) due to its depen-
dence on 1/êi and 1/(1− êi). The presence of a few extreme predictions is robustly
compensated in ATE estimation (see Bias= 0.0032 ≈ 0 in agreement with its double
robustness) but leads to significantly high RMSE (which is more sensitive to outliers)
for ITE estimation. On the other hand, CRE (AIPW) leads to the best performances
for ITE estimation (RMSE= 0.1336) among all the considered methods, confirming
that AIPW ITE estimation is still properly capturing the heterogeneity in the treat-
ment effect. The best performances in ATE estimation (Bias= 0.0009) are obtained
by CRE (Causal BART).

We then report in Figure 4.2 a boxplot on the AATEs (α) estimation bias:

Bias(rm) = αm − α̂m ∀rm ∈ R, (4.21)
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for a comparison among the different CRE variants over the same 250 Monte Carlo
experiments. We remove CRE (CF) from this comparison due to its consistently in-
correct rules discovery with redundant rules, leading to systematically biased AATEs
estimations. Indeed, AATEs estimations strictly depend on the retrieved set of de-
cision rules R̂.

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Bias

CRE (AIPW)

CRE (BCF)

CRE (S-Learner)

CRE (T-Learner)

CRE (X-Learner)

CRE (Causal BART)

M
et

ho
d

Rule 1

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Bias

Rule 2

Figure 4.2: Simulation study for (heterogeneous) treatment effect estimation, with
M = 2 rules, linear confounding and 2,000 individuals. For all the CRE variants,
for each rule, the AATE’s bias over 250 Monte Carlo experiments is reported in a
boxplot.

The results for each method are obtained considering all of the 250 Monte Carlo
experiments with Recall = 1 (retrieving both the true decision rules), also consider-
ing the cases of incorrect discovery (Precision < 1). As expected from Proposition
2, all the CRE variants lead to consistent AATEs estimation (median centered in 0),
even without assuming perfect rules discovery. Consistent results for ITE, ATE, and
AATE estimation are obtained in varying:

i. the sample size (1,000, 2,000, 5,000);

ii. the number of the decision rules (2, 4);

iii. the complexity of the decision rules (1, 2, 3);

iv. the type of confounding (none, linear, non-linear).

A comprehensive analysis of these additional simulations is reported in Appendix A.

4.3 Beyond Treatment Effect Linear Decomposition

All the encouraging results in the last two sections about CRE on both heterogeneity
discovery and estimation are based on the Treatment Effect linear decomposition
assumption. As discussed in Section 2, this assumption trivially holds if the covariates
space X is finite. This is often the case in medical applications, where the majority
of variables are binary or discretized to preserve interpretability.
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However, there are also several scenarios where the heterogeneity in the Condi-
tional Average Treatment Effect doesn’t linearly decompose in terms of decision rules,
and neither a step-wise approximation of the CATE is sufficient. In this section, we
present a third simulation study, revisiting the data-generating process described in
Section 4.1 breaking the Treatment Effect linear decomposition assumption.

Let I a sample of N = 2000 individuals. For each individual i ∈ I, let’s define:

X1
i , ..X

p
i

iid∼ U[0,1] and Xi = (X1
i , ..., X

p
i ) (4.22)

Zi ∼ Bernoulli(πi) with πi =
1

1 + e+1−X1
i +X2

i −X3
i

(4.23)

where Xi is the vector of the p = 10 observed (binary) covariates of individual i, and
Zi represents its assigned treatment. Let us further define the potential outcomes:

Yi(0) ∼ N (µ0
i , 1) with µ0

i = X1
i +X3

i +X4
i + k · 1{x1=1;x2=0}(Xi) (4.24)

Yi(1) ∼ N (µ1
i , 1) with µ1

i = X1
i +X3

i + k · 1{x5=1;x6=0}(Xi) (4.25)

where k ∈ R represents the magnitude of the causal effect. It follows that the
(unobserved) Treatment Effect of individual i is equal to:

τi = Yi(1)−Yi(0) = −k · 1{x1=1;x2=0}(Xi)+ k · 1{x5=1;x6=0}(Xi)+ k ·X4
i + νi (4.26)

where:

νi ∼ N (0, 2) (4.27)

is an additive zero-mean noise, and

τ(x) = k · (1{x5=1;x6=0}(x)− 1{x1=1;x2=0}(x) + x4) (4.28)

is the corresponding Conditional Average Treatment Effect.

By definition, Equation 4.28 doesn’t satisfy Assumption 4, and the CRE consis-
tency results described in Chapter 3 don’t hold. In this framework, the decision rules
discovery task is not even defined, but we still propose to evaluate the estimation
performances, as proposed in Section 4.2. Causal Rule Ensemble cannot capture the
continuous dependence of the CATE on the fourth covariate, but it can still try to
approximate it by a step-wise function.

We consider the usual 7 variants of CRE with the corresponding 7 ‘standalone’
ITE estimators, and for each method, we report the mean and standard deviation
RMSE and Bias in ITE estimation over 250 Monte Carlo experiments. We consider
the same method parameters and hyperparameters reported in Table 4.1, with ex-
ception of two discovery parameters we modify due to the new covariate space. In
particular, we fix now: tcorr = 0.7 and PFER = 0.5. We report the results in Table
4.3.

Before discussing the results, it is important to mention that they are not com-
parable with the analysis in the previous Section, not just because of the modified
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RMSE Bias
Method µ σ µ σ

CRE (AIPW) 1.5438 0.2291 -0.1430 0.2705
CRE (CF) 3.7773 0.6114 1.2915 1.4688
CRE (BCF) 2.1611 0.7145 -0.5800 1.0673

CRE (S-Learner) 1.5496 0.2412 -0.1105 0.2772
CRE (T-Learner) 1.4785 0.2723 -0.1939 0.2970
CRE (X-Learner) 1.4839 0.2671 -0.1947 0.2996

CRE (Causal BART) 2.7969 0.1737 -1.4769 0.2866

AIPW 0.5907 0.0365 -0.0305 0.0497
CF 3.3537 0.3618 0.6974 1.1117
BCF 0.9507 0.3409 0.0834 0.4185

S-Learner 0.5105 0.0439 -0.0311 0.0494
T-Learner 1.1149 0.0257 -0.0133 0.0487
X-Learner 1.1626 0.0258 -0.0133 0.0487

Causal BART 1.9984 0.2841 -0.5242 0.6673

Table 4.3: Simulation study for (heterogeneous) treatment effect estimation, with
M = 2 rules, linear confounder, 2,000 individuals, and violating CATE linear de-
composition assumption. For all the methods, the mean (µ) and standard deviation
(σ) treatment effect root mean squared error (RMSE) and bias (Bias) over 250 Monte
Carlo experiments are reported.

CATE function, but also because we are now considering different covariates space,
and distribution (uniform).

Overall the ‘standalone’ ITE estimators outperform the corresponding CRE vari-
ants in both ITE and ATE estimation. In particular, the S-Learner gets the best
performances in ITE estimation (RMSE= 0.5105) and both T-Learner and X-Learner
get the best performances in ATE estimation (Bias=−0.0133). Causal Forest and
Causal BART provide a biased estimation, which drastically propagates in the cor-
responding CRE variants. Similar results, but milder, are observed for Bayesian
Causal Forest. Empirical evidence about the Causal Forest slow convergence rate
was already observed in papers analyzing the empirical results of these methods
(Hahn et al.; 2019; Wendling et al.; 2018). All the remaining CRE variants lead to
the (almost) comparable ITE estimation without systematic biases.

With this final simulation study, we proposed to test the CRE estimation per-
formances beyond its main assumption of Treatment Effect linear decomposition.
Despite a few CRE variants (CF, BCF, Causal BART) wrongly propagating the sys-
tematic errors of the corresponding ITE estimators, several CRE variants (AIPW,
S-Learner, T-Learner, X-Learner) still reasonably approximate the heterogeneity in
the treatment effect and preserve interpretability. However, classic ITE estimators
outperform CRE in this setting. The treatment effect linear decomposition in terms
of decision rules is not flexible enough to capture complex heterogeneity. There is
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no free lunch, and the price for more interpretability is paid in the form of a reduced
model flexibility (degrees of freedom).
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Chapter 5

Heterogeneous Effects of Air
Pollution Exposure on Mortality

The literature indicates that long-term exposure to lower levels of PM2.5 is associated
with a significant decrease in mortality (see, e.g., Dockery et al.; 1993; Di et al.;
2017; Liu et al.; 2019; Pappin et al.; 2019; Wu, Braun, Schwartz, Kioumourtzoglou
and Dominici; 2020). While previous research has contributed to understanding
the average treatment effect of long-term PM2.5 exposure, it has largely neglected
to explore potential heterogeneity in the causal effects. However, it is essential to
investigate how the causal effect may differ across different groups of individuals in
health studies to develop more effective health policies.

In this context, our focus is on identifying vulnerability or resilience in the causal
effects with respect to the average effect of exposure to air pollution on mortality.
In particular, we examine the heterogeneous effects of long-term PM2.5 exposure to
high levels of air pollution among individuals aged 65 and above who were enrolled
in Medicare in the years 2010-2016. By utilizing our CRE methodology, we showcase
how our approach can identify distinct groups, estimate the heterogeneity in the
effects of long-term PM2.5 exposure on mortality, and identify the social-economical
characteristics that distinguish the different heterogeneous subgroups.

5.1 Data

We collected data from 35,331,290 Medicare beneficiaries across the contiguous U.S.
For each beneficiary, we have information on age, sex, race (specifically categorized
as Hispanic, black, white, and other race), eligibility for Medicaid (this variable is a
proxy of low social-economic status), and whether or not they died in the 5 follow-up
years (2012-2016). We integrated these data with average PM2.5 levels in 2010 and
2011. Figure 5.1 depicts the average levels PM2.5 for the biennium 2010-2011 across
the contiguous U.S.

Furthermore, we integrated census variables at the ZIP code level and county-
level variables. At the ZIP code level, we have information on the average household
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income, average home value, the proportion of residents in poverty, the proportion
of residents without a high school diploma, the population density, the proportion of
residents who own their houses and the proportion of the black and Hispanic popula-
tion. Furthermore, we considered meteorological data such as the average maximum
daily temperatures and relative humidity during summer (June to September) and
winter (December to February). At the county level, we considered variables on the
average body mass index and the average smoking rate.

Figure 5.1: Average levels PM2.5 for the biennium 2010-2011 in the contiguous U.S.

5.2 Study Design

We define the treatment variable as Z = 1 if the average PM2.5 in 2010 and 2011 is
above the threshold of 12µg/m3 and Z = 0 otherwise. The choice of 12µg/m3 as a
threshold aligns with the current National Ambient Air Quality Standard (NAAQS)
established by the Environmental Protection Agency (EPA). All the covariates at the
individual level (except for age) are already binary, and we keep them as such. In
order to enforce interpretability, we also binarize all the other covariates—i.e., age,
zip code level variables, and county level variables—using the median as a threshold.
Different discretization criteria and thresholds can be considered for more detailed
heterogeneity characterization (even not discretization at all). For each individual,
the observed factual outcome Y is equal to 1 if the person died in the five follow-up
years (2012-2016) and 0 otherwise.

We investigate the heterogeneity in the effects of air pollution on mortality in the
four different geographical regions defined by the U.S. Census Bureau separately (see
Figure 5.2). It is crucial to investigate the effects of air pollution on health across
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Figure 5.2: Map of the four census geographical regions for the contiguous U.S.

the different geographical regions of the U.S. for several reasons.

Firstly, the U.S. is a vast country with a diverse climate and environmental con-
ditions, leading to substantial differences in air quality and exposure to air pollution
across different regions (see Figure 5.1). As highlighted by Baxter et al. (2013), it
is utterly important to assess the differential risks of air pollution on mortality at a
regional level as they could be suggestive heterogeneous health responses driven by
variations in the PM2.5 composition and the concentration of gaseous pollutants.

Secondly, people living in different regions may have different susceptibilities to
the health effects of air pollution due to various factors such as genetics, lifestyle, and
pre-existing health conditions (Dominici et al.; 2006; Kloog et al.; 2013; Zanobetti
et al.; 2009). Therefore, understanding the heterogeneity in the health effects of air
pollution across different regions can help identify vulnerable populations and design
targeted interventions to mitigate the adverse health effects.

Thirdly, Dedoussi et al. (2020) found that 41 to 53% of air-quality-related pre-
mature mortality resulting from a state’s emissions occurs outside that state. Hence,
regional-level analyses—factoring in the potential out-of-state sources of emission—
directly map into region-wide policies that may be more effective in reducing the
mortality burdens from exposure to air pollution.

All this considered, investigating the effects of air pollution on health across
different regions of the U.S. is essential for identifying the specific risks associated
with exposure to pollutants, understanding the heterogeneity in the health effects
across different populations, and informing public health policies and interventions.
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The list of CRE methods and hyper-parameters used in these analyses is reported
in Table 5.1.

Parameter Value

Honest Splitting Ratio 0.5

Discovery

ITE Estimation
Estimator X-Learner
Outcome estimator (µ̂) XGBoost

Rules Generation

N. Trees (Random Forest) 100
N. Trees (GBM) 100
Replace True
Max node (subgroup) size 20
Max depth (L) 2
Max number of nodes (per tree) 4

Filtering
tdecay 0.002
text 0.005
tcorr 1

Rules Selection
Upper Bound PFER 1
πthr 0.8

Estimation

ITE Estimation
Estimator X-Learner
Outcome estimator (µ̂) XGBoost

CATE Estimation tp−value 0.05

Table 5.1: List of CRE method parameters and hyper-parameters used for the dis-
covery and estimation of HTE of air pollution exposure on mortality.

5.3 Results

Consistently with the literature, we found that being exposed to higher levels of air
pollution with respect to the NAAQS of 12µg/m3 leads to an increase in mortality in
each of the four regions of the contiguous U.S. considered. The greatest increase was
found in the Northeast, where individuals exposed, in the biennium 2010-2011, to
levels of PM2.5 higher than the NAAQS were found to be 16.2% more likely to die in
the five following years, compared to those exposed to levels lower than the NAAQS.
We found 14.9%, 7.1%, and 2.3% increases in mortality in the West, Midwest, and
South, respectively.

Using CRE, next to the average treatment effects, we were also able to discover
notable heterogeneities with respect to the average treatment effect in each of the
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four regions. Figure 5.3 depicts the results of our analyses.
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Figure 5.3: Results obtained from CRE for the discovery and estimation of HTE
of air pollution exposure on mortality. For each U.S. Census geographical region,
we report the ATE and the various AATEs for the discovered decision rules (with
the corresponding 95% confidence interval). The prefix zc in the variable names
stands for zip-code level variable, and county stands for county level. All the other
variables are at the individual level. The threshold q(α) stands for the α-quantile of
that variable in that region—e.g., q(0.5) is the median.

For each of the four regions, we found both positive and negative additive average
treatment effects. When an AATE is positive, it means that, under that decision
rule, it was estimated a treatment effect greater than without (fixing all the others’
contributions). Conversely, when an AATE is lower than zero, it means that, under
that decision rule, it was estimated a treatment effect smaller than without. No-
tably, for all the regions, the effects of the AATEs never completely offset the ATE,
indicating an overall detrimental impact of exposure to higher levels of air pollution
on health both at a population and a subgroup level.

We find high fragmentation in the heterogeneity characterizing the groups where
exposure to higher levels of PM2.5 increases the mortality rate—i.e., a positive AATE.
A clear trend is provided by an increased risk for individuals living in low-density
areas (i.e., zc density< q(0.5)) in the Northeast, Midwest, and South. Low-density
areas, such as rural areas, can be characterized by decreased access to medical care,
and this, paired with exposure to higher levels of air pollution, may be a possible
driver of higher vulnerability. The second notable heterogeneity driver comes from
individuals with a low socio-economic status (i.e., medicaid= 0) or living in low-
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income areas (i.e., zc household income< q(0.5)) in the West and South being more
vulnerable. The last one is for individuals living in black (i.e., zc black> q(0.5)), yet
less poor (i.e., zc poverty< q(0.5)), areas in the South being more vulnerable. Other
vulnerabilities are found in individuals living in areas with a minor black population
(in the Midwest), a smaller rate of people without a diploma (in the Northeast), a
minor Hispanic population (in the West), and people neither white nor black (in the
South).

In juxtaposition, the groups where exposure to higher levels of PM2.5 decreases
the ATE on the mortality rate are mainly composed of a population with fewer old
individuals (in particular in the Midwest, West, and South). Consistently, with what
was found for the vulnerability, individuals living in areas with a higher density of
minority groups (i.e., Hispanic in the Midwest and West) were found to be at lower
risk. While surprising this has already been documented in the literature (Liu et al.;
2021; Jbaily et al.; 2022), and it finds a possible explanation in potential survival bias
(see, e.g., Mayeda et al.; 2018; Shaw et al.; 2021). Survival bias happens in cohort
studies that start at a late stage in people’s lives, leading to the most vulnerable
individuals in certain groups dying before entering the cohort. In this case, the
individuals entering the cohort are the most resilient ones and might depict a lower
mortality risk, with respect to the average risk, even when exposed to higher levels
of pollutants (Liu et al.; 2021). This is likely to be the case for these groups. We
know, from previous literature, that Hispanic and black populations are structurally
exposed to higher levels of air pollution. Exposure effects might accumulate over
time—as is likely the case with PM2.5—leading to the most fragile individual dying
before entering the Medicare cohort (see, e.g., Pope III et al.; 2019; Liu et al.; 2021;
Jbaily et al.; 2022).

To conclude, CRE was able to identify the key factors in the population character-
istics that explain different degrees of vulnerability to exposure to air pollution. This
application demonstrates the ability of CRE to retrieve non-trivial yet interpretable
characterization of the heterogeneous subgroups.

38



Chapter 6

Conclusion

In this thesis, we introduced a new method for interpretable discovery and estimation
of heterogeneous treatment effects. The proposed CRE methodology accommodates
the well-known shortcomings in the flexibility of (individual) causal trees and in-
terpretability of ensembles of causal trees (i.e., Causal Forest) relying on the linear
decomposition of the treatment effect in terms of decision rules. By design (see Sta-
bility Selection), its heterogeneity discovery is stable to sample-to-sample variations,
and under the assumptions of identifiability and linear decomposition, CRE leads to
consistent estimates.

The decision rules characterizing the heterogeneity are estimated by a fit −
the − fit procedure, relying on a preliminary individual treatment effect (pseudo-
outcome) estimation by any existing treatment effect estimator. Similarly, the final
linear model relies on an analogous preliminary individual treatment effect (pseudo-
outcome) estimation. Therefore, the CRE method can be thought of as a refinement
process of the outputs produced by existing methods. Different properties character-
ize different estimators, and the performance of CRE varies with respect to them. If
an estimator properly estimates the heterogeneity in the treatment effect, the CRE
method discovers the underlying treatment effect structure with higher probability
and represents this structure in an easy-to-interpret form.

The maximal number and complexity of the rules can be set by researchers or
practitioners. Indeed, a few simple (i.e., not lengthy) rules are utterly important for
public policy implications, where policy guidelines need to be as simple and as general
as possible. However, when it comes to precision medicine, discovering a possibly
lengthy rule that is specific to a patient could be of interest. Also, the choice of how
many causal rules to discover in the discovery step may depend on the questions
that practitioners want to answer. For example, policymakers generally want to
discover a short list of risk factors. A few important subgroups defined by the risk
factors are usually easy-to-understand and further foster focused discussions about
the assessments of potential risks and benefits of policy actions. Due to the restriction
of resources, public health can be promoted efficiently when prioritized subgroups are
available. Conversely, in precision medicine, a comparatively larger set of decision
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rules can be chosen. Indeed, an important goal is to identify patient subgroups
that respond to treatment at a much higher (or lower) rate than the average (Loh
et al.; 2019). Also, identifying a subgroup that must avoid the treatment due to its
excessive side effects can be valuable information. However, discovering only a few
subgroups is likely to miss this extreme subgroup.

From simulations, we exhibited that CRE has competitive performances both in
the discovery and estimation of the treatment effect. We showed first, as a proof
of concept, that under the linear decomposition assumption and significant causal
effect, CRE perfectly retrieves the correct treatment effect decomposition. Then
we compared CRE performances in estimation with several of the most successful
causal machine-learning methods for heterogeneous treatment effect estimation. Un-
der linear decomposition assumption, CRE significantly outperforms all the other
estimators, correctly capturing the heterogeneity in the treatment effect in terms of
decision rules. Opposite results are observed in absence of this assumption, where
the heterogeneity is too complex to be captured by decision rules, and more flexible
but less interpretable methods are required. All the simulation studies are repeated
with different data-generating processes, leading to consistent results; and numerous
seeds to enforce reproducibility.

The use of CRE allowed for the identification of crucial factors in characteristics
that help explain the varying levels of susceptibility to air pollution exposure in the
elderly population in the U.S. By employing CRE, a non-trivial and comprehensible
characterization of distinct subgroups has been retrieved. This application not only
showcased the efficacy of CRE in deciphering complex patterns in data but also
highlighted the significance of understanding the heterogeneous nature of populations
in relation to environmental hazards. Such insights should be paired with extensive
analyses of vulnerability to air pollution in the younger population. The results
of our analyses, found indeed, that there may be room for possible survival bias
when analyzing the vulnerability to air pollution due to structural differences in air
pollution exposure across the U.S.

A number of extensions of the CRE method can be possible. CRE deals with the
exploration of heterogeneous treatment effects in the simple case of a binary treat-
ment in a cross-sectional setting. It would be of great interest to extend the CRE
setting to continuous treatment effects and time-series studies as these dimensions
might be critically important for a number of applications in social and health sci-
ences. Furthermore, starting from CRE to develop interpretable methods for optimal
policies or targeted treatment assignment is also crucial. Optimal policies involve
assigning treatments to individuals in a manner that maximizes the desired outcome
while taking into account their unique characteristics. Such an approach could lead
to more effective and efficient treatment outcomes, reduce unnecessary treatment and
improve patient outcomes. Additionally, by targeting treatments to the appropriate
individuals, optimal policies can help reduce health disparities and ensure that inter-
ventions are more equitably distributed. Therefore, developing methods for optimal
policies is an important future extension of CRE in the direction of moving one step
closer to achieving personalized and effective healthcare.

40



Appendix A

Additional Simulations

In this Appendix, we present a more extensive analysis of the heterogeneity discov-
ery and treatment effect estimation simulation studies under different variants of the
data-generating process, varying the sample size, the number of decision rules, the
complexity of the decision rules and the type of confounding. In particular, for both
the simulation studies, we consider the following five variants to the data generat-
ing process described in Section 4.1 (where all the definitions are kept equal if not
otherwise specified):

i. Large Sample: N = 5, 000 individuals, M = 2 rules (r1, r2), linear confound-
ing;

ii. Small Sample: N = 1, 000 individuals, M = 2 rules (r1, r2), linear confound-
ing;

iii. More Rules: N = 2, 000 individuals, M = 4 rules (r1, r2, r3, r4), linear
confounding, where:

µ0
i = X1

i +X3
i +X4

i + k · 1{x1=1;x2=0}(Xi) +
k

2
· 1{x4=0}(Xi)

= X1
i +X3

i +X4
i + k · r1(Xi) +

k

2
· r3(Xi),

(A.1)

µ1
i = X1

i +X3
i +X4

i + k · 1{x5=1;x6=0}(Xi) + 2k · 1{x5=0;x7=1;x8=0}(Xi)

= X1
i +X3

i +X4
i + k · r2(Xi) + 2k · r4(Xi),

(A.2)

and then:

τ(x) = −k · r1(x) + k · r2(x)−
k

2
· r3(x) + 2k · r4(x); (A.3)

iv. (Pseudo) Randomized Controlled Trial: N = 2, 000 individuals, M = 2
rules (r1, r2), only confounding by decision rules, i.e.:

µ0
i = k · 1{x1=1;x2=0}(Xi) = k · r1(Xi), (A.4)

µ1
i = k · 1{x5=1;x6=0}(Xi) = k · r2(Xi); (A.5)
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and then (as the original data-generating process):

τ(x) = −k · r1(x) + k · r2(x); (A.6)

v. Non-Linear Confounding: N = 2, 000 individuals, M = 2 rules (r1, r2),
non-linear confounding, i.e.:

µ0
i = X1

i + sin(x3i · x4i ) + k · 1{x1=1;x2=0}(Xi) = k · r1(Xi), (A.7)

µ1
i = X1

i + sin(x3i · x4i ) + k · 1{x5=1;x6=0}(Xi) = k · r2(Xi). (A.8)

and then (as the original data-generating process):

τ(x) = −k · r1(x) + k · r2(x); (A.9)

Each of the described data-generating process vary the original design for a spe-
cific characteristic, which we desire to test our methodology on. In the Section A.1
we report and discuss the results of the heterogeneity discovery simulation study
over these different data generating processes, and in the Section A.1 we report and
discuss the results of the heterogeneous treatment effect estimation simulation study
over the same instances.
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A.1 Discovery

In this Section, we discuss, one by one, the results of the simulations study on
heterogeneity discovery presented in Section 4.1 on the five variant data generating
processes described above.

Large Sample

In Figure A.1 we report the results for heterogeneity discovery increasing the sample
size to N = 5, 000 individuals. As expected, all the methods follow the same trends
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Figure A.1: Simulation study for heterogeneity discovery results with 2 rules, linear
confounders and 5,000 observations. Mean Precision, Recall and F1− score (lines)
with the corresponding 95% confidence intervals (bands) over 250 Monte Carlo exper-
iments are reported for each method and causal effect size k. For each CRE variant,
the heterogeneity characterization discovery converges (with respect to effect size)
to the true heterogeneity characterization.

described for the original data generating process, but significantly increasing the
convergence rate, in particular for the Recall in both Estimation and Decision Rules
retrieval. CRE (AIPW) is the unique method not speeding up the convergence rate
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to perfect recovery, probably due to its instability issued already discussed in Section
4.2.

Small Sample

In Figure A.2 we report the results for heterogeneity discovery decreasing the sample
size to N = 1, 000 individuals. As expected, all the methods follow the same trends
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Figure A.2: Simulation study for heterogeneity discovery results with 2 rules, linear
confounders and 1,000 observations. Mean Precision, Recall and F1− score (lines)
with the corresponding 95% confidence intervals (bands) over 250 Monte Carlo exper-
iments are reported for each method and causal effect size k. For each CRE variant,
the heterogeneity characterization discovery converges (with respect to effect size)
to the true heterogeneity characterization.

described for the original data generating process, without significantly decreasing
the convergence rate toward perfect discovery. These results strongly encourage the
use of CRE even in a small sample regime.
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More Rules

In Figure A.3, we report the results for heterogeneity discovery, increasing the num-
ber of decision rules to M = 4. As expected, (almost) all the methods increase their
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Figure A.3: Simulation study for heterogeneity discovery results with 4 rules, linear
confounders and 2,000 observations. Mean Precision, Recall and F1− score (lines)
with the corresponding 95% confidence intervals (bands) over 250 Monte Carlo exper-
iments are reported for each method and causal effect size k. For each CRE variant,
the heterogeneity characterization discovery converges (with respect to effect size)
to the true heterogeneity characterization.

discovery performances increasing the causal effect (k). There are now seven effect
modifiers out of p = 10 covariates, which leads to easier effect modifiers retrieval.
The decision rules discovery is instead more challenging due to the higher and hetero-
geneous/more complex number of rules to retrieve. All the methods, with except to
CRE (CF), still perfectly retrieve all the true decision rules with k > 3 (Recall = 1),
but again, they often retrieve also wrong or redundant rules (Precision < 1). CRE
(CF) is the unique method that does not showing a significant dependence on the
causal effect for k > 1. Our hypothesis is that during the ITE estimation, it struggles
more than the other methods in trying to express the heterogeneity in the longest
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rules (i.e., r3) through its causal trees.

Randomized Controlled Trial

In Figure A.4, we report the results for heterogeneity discovery with no confounding
(if not in terms of decision rules). As expected, all the methods follow the same
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Figure A.4: Simulation study for heterogeneity discovery results with 2 rules, no
confounders (randomized controlled trial) and 2,000 observations. Mean Precision,
Recall and F1−score (lines) with the corresponding 95% confidence intervals (bands)
over 250 Monte Carlo experiments are reported for each method and causal effect
size k. For each CRE variant, the heterogeneity characterization discovery converges
(with respect to effect size) to the true heterogeneity characterization.

trends described for the original data generating process, but significantly and equally
increasing the convergence rate, in particular for the Recall in both Estimation
and Decision Rules retrieval. Indeed, removing additional confounding mechanism
facilitate all the estimation steps.
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Non-Linear Confounding

In Figure A.5, we report the results for heterogeneity discovery with non-linear con-
founding. As expected, all the methods follow the same trends described for the
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Figure A.5: Simulation study for heterogeneity discovery results with 2 rules, non-
linear confounders and 2,000 observations. Mean Precision, Recall and F1− score
(lines) with the corresponding 95% confidence intervals (bands) over 250 Monte Carlo
experiments are reported for each method and causal effect size k. For each CRE
variant, the heterogeneity characterization discovery converges (with respect to effect
size) to the true heterogeneity characterization.

original data generating process, without significantly decreasing the convergence
rate towards perfect discovery, although the more complex confounding mechanism.
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A.2 Estimation

In this Section, we discuss, one by one, the results of the simulations study on
heterogeneous treatment effect estimation presented in Section 4.2 on the five variant
data generating processes described above.

Large Sample

In Table A.1, we report the results for heterogeneous treatment effect estimation,
increasing the sample size to N = 5, 000 individuals. As discussed in Section 4.2,

RMSE Bias
Method µ σ µ σ

CRE (AIPW) 0.0804 0.0357 0.0011 0.0527
CRE (CF) 0.1598 0.0714 -0.0007 0.0505
CRE (BCF) 0.0891 0.0324 0.0022 0.0488

CRE (S-Learner) 0.0918 0.0332 0.0010 0.0497
CRE (T-Learner) 0.0905 0.0343 0.0034 0.0522
CRE (X-Learner) 0.0850 0.0337 0.0034 0.0522

CRE (Causal BART) 0.0781 0.0306 0.0002 0.0490

AIPW 2.2526 0.0910 0.0016 0.0342
CF 0.2070 0.0606 -0.0043 0.0330
BCF 0.0814 0.0234 0.0020 0.0319

S-Learner 0.3110 0.0218 0.0012 0.0333
T-Learner 0.5090 0.0214 0.0024 0.0333
X-Learner 1.0756 0.0140 0.0024 0.0333

Causal BART 0.9977 0.0099 0.0003 0.0315

Table A.1: Simulation study for HTE estimation, with M = 2 rules, linear con-
founder, 5,000 individuals and under CATE linear decomposition assumption. For
all the methods, the mean (µ) and standard deviation (σ) treatment effect root
mean squared error (RMSE) and bias (Bias) over 250 Monte Carlo experiments are
reported.

all the CRE variants significantly outperform the corresponding ‘standalone’ ITE
estimators in both ITE and ATE estimation. Bayesian Causal Forest is the unique
ITE estimator in getting similar performances to the corresponding CRE variant.
AIPW estimator still suffers from not stabilized ITE prediction. Causal Forest, and
similarly CRE (CF), significantly improve their estimation performances with respect
to the original data generating process, leading to unbiased estimation, enforcing our
hypothesis of empirically slower Causal Forest consistency convergence rate.

In Figure A.6, we report the results for AATEs estimation, increasing the sample
size to N = 5, 000 individuals. As expected from Proposition B, all the methods
lead to consistent AATEs estimation, with a confidence interval even smaller than
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Figure A.6: Simulation study for HTE estimation, with M = 2 rules, linear con-
founding and 5,000 individuals. For all the CRE variants, for each rule, the AATE’s
bias over 250 Monte Carlo experiments is reported in a boxplot.

the original data-generating process.

Small Sample

In Table A.2, we report the results for heterogeneous treatment effect estimation,
decreasing the sample size to N = 1, 000 individuals. As discussed in Section 4.2,

RMSE Bias
Method µ σ µ σ

CRE (AIPW) 0.2195 0.0882 -0.0136 0.1343
CRE (CF) 1.4953 0.2715 0.1043 0.1695
CRE (BCF) 0.2215 0.0758 0.0055 0.1182

CRE (S-Learner) 0.2312 0.0880 -0.0132 0.1321
CRE (T-Learner) 0.1976 0.0859 -0.0265 0.1194
CRE (X-Learner) 0.1961 0.0854 -0.0265 0.1194

CRE (Causal BART) 0.2225 0.0821 -0.0003 0.1187

AIPW 1.7045 0.1320 -0.0037 0.0843
CF 0.7172 0.1290 0.0338 0.0945
BCF 0.2056 0.0570 0.0022 0.0847

S-Learner 0.6844 0.0590 -0.0030 0.0808
T-Learner 1.1078 0.0590 -0.0064 0.0858
X-Learner 1.3403 0.0527 -0.0064 0.0858

Causal BART 0.9862 0.0248 -0.0007 0.0850

Table A.2: Simulation study for HTE estimation, with M = 2 rules, linear con-
founder, 1,000 individuals and under CATE linear decomposition assumption. For
all the methods, the mean (µ) and standard deviation (σ) treatment effect root
mean squared error (RMSE) and bias (Bias) over 250 Monte Carlo experiments are
reported.
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(almost) all the CRE variants significantly outperform the corresponding ‘standalone’
ITE estimators in both ITE and ATE estimation without significantly worsening the
performances from the original data-generating process (with larger sample size),
with exceptions of CF and BCF. Indeed, Causal Forest in a small sample regime
leads to even more systematic errors in estimation, which drastically propagate in
the corresponding CRE variant.

In Figure A.7, we report the results for AATEs estimation, increasing the sample
size to N = 1, 000 individuals. As expected from Proposition B, all the methods lead
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Figure A.7: Simulation study for HTE estimation, with M = 2 rules, linear con-
founding and 1,000 individuals. For all the CRE variants, for each rule, the AATE’s
bias over 250 Monte Carlo experiments is reported in a boxplot.

to consistent AATEs estimation, with not significantly larger confidence intervals
with respect to the original data generating process, although the sample size.

More Rules

In Table A.3, we report the results for heterogeneous treatment effect estimation,
increasing the number of decision rules to M = 4. As discussed in Section 4.2, (al-
most) all the CRE variants significantly outperform the corresponding ‘standalone’
ITE estimators in both ITE and ATE estimation without significantly worsening the
performances from the original data-generating process (with simpler CATE decom-
position), with exceptions of CF and BCF. Indeed, Causal Forest in a more complex
CATE characterization regime leads to even more systematic errors in estimation,
which drastically propagate in the corresponding CRE variant.

In Figure A.8, we report the results for AATEs estimation, increasing the num-
ber of decision rules to M = 4. As expected from Proposition B, all the methods
lead to consistent AATE estimation for (almost) all the rules. Only the fourth and
longest rule is slightly underestimated by almost all the methods, probably due to
the redundant recovery of other similar decision rules (Precision < 1).
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RMSE Bias
Method µ σ µ σ

CRE (AIPW) 0.2505 0.1897 -0.0029 0.0936
CRE (CF) 3.3730 0.1470 0.2048 0.1780
CRE (BCF) 0.1901 0.0884 0.0061 0.0804

CRE (S-Learner) 0.2967 0.1394 -0.0044 0.0900
CRE (T-Learner) 0.2349 0.0943 0.0003 0.0944
CRE (X-Learner) 0.2356 0.1416 0.0003 0.0948

CRE (Causal BART) 0.1757 0.0729 -0.0017 0.0810

AIPW 2.1139 0.2077 0.0007 0.0561
CF 2.2405 0.1421 0.1331 0.0932
BCF 0.1698 0.0353 0.0045 0.0519

S-Learner 0.5410 0.0394 -0.0006 0.0532
T-Learner 0.8075 0.0371 0.0026 0.0567
X-Learner 1.1883 0.0293 0.0026 0.0567

Causal BART 0.9994 0.0161 0.0012 0.0517

Table A.3: Simulation study for HTE estimation, with M = 4 rules, linear con-
founder, 2,000 individuals and under CATE linear decomposition assumption. For
all the methods, the mean (µ) and standard deviation (σ) treatment effect root
mean squared error (RMSE) and bias (Bias) over 250 Monte Carlo experiments are
reported.
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Figure A.8: Simulation study for HTE estimation, with M = 4 rules, linear con-
founding and 2,000 individuals. For all the CRE variants, for each rule, the AATE’s
bias over 250 Monte Carlo experiments is reported in a boxplot.
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Randomized Controlled Trial

In Table A.4, we report the results for heterogeneous treatment effect estimation,
with no confounding (if not in terms of decision rules). As discussed in Section 4.2,

RMSE Bias
Method µ σ µ σ

CRE (AIPW) 0.1342 0.0602 0.0031 0.0884
CRE (CF) 0.6379 0.1389 0.0196 0.0946
CRE (BCF) 0.1492 0.0552 0.0047 0.0796

CRE (S-Learner) 0.1465 0.0576 0.0025 0.0848
CRE (T-Learner) 0.1489 0.0659 0.0062 0.0931
CRE (X-Learner) 0.1443 0.0655 0.0062 0.0931

CRE (Causal BART) 0.1457 0.0621 0.0010 0.0810

AIPW 2.0757 0.1897 0.0039 0.0560
CF 0.3022 0.0884 0.0019 0.0542
BCF 0.1351 0.0371 0.0045 0.0517

S-Learner 0.4690 0.0342 0.0031 0.0527
T-Learner 0.8042 0.0367 0.0042 0.0563
X-Learner 1.1863 0.0286 0.0042 0.0563

Causal BART 0.9924 0.0165 0.0021 0.0523

Table A.4: Simulation study for HTE estimation, with M = 2 rules, no-confounder
(randomized controlled trial), 2,000 individuals and under CATE linear decompo-
sition assumption. For all the methods, the mean (µ) and standard deviation (σ)
treatment effect root mean squared error (RMSE) and bias (Bias) over 250 Monte
Carlo experiments are reported.

(almost) all the CRE variants significantly outperform the corresponding ‘standalone’
ITE estimators in both ITE and ATE estimation without significantly worsening the
performances from the original data-generating process (with linear confounding),
with exceptions of CF and BCF. Given the similarity of the results with the original
data-generating process, we empirically observe that the under the assumption of
unconfoundness (Assumption 3) CRE algorithm is robust with respect to the con-
founfounding mechanism. CRE (AIPW) is the best-performing method in ITE esti-
mation (although the unstable AIPW pseudo-outcome estimation) and CRE (Causal
BART) leads to the most consistent estimate.

In Figure A.9, we report the results for AATEs estimation, with no confounding
(if not in terms of decision rules). As expected from Proposition B, all the methods
lead to consistent AATEs estimation.
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Figure A.9: Simulation study for HTE estimation, with M = 2 rules, no-confounding
(randomized controlled trial) and 2,000 individuals. For all the CRE variants, for
each rule, the AATE’s bias over 250 Monte Carlo experiments is reported in a box-
plot.

Non-Linear Confounding

In Table A.5, we report the results for heterogeneous treatment effect estimation with
non-linear confounding. The confounding mechanism doesn’t seem to significantly

RMSE Bias
Method µ σ µ σ

CRE (AIPW) 0.1343 0.0601 0.0037 0.0881
CRE (CF) 0.6374 0.1400 -0.0059 0.0949
CRE (BCF) 0.1493 0.0555 0.0050 0.0790

CRE (S-Learner) 0.1492 0.0599 0.0035 0.0849
CRE (T-Learner) 0.1490 0.0664 0.0074 0.0937
CRE (X-Learner) 0.1460 0.0651 0.0073 0.0938

CRE (Causal BART) 0.1421 0.0628 0.0002 0.0817

AIPW 2.0767 0.1945 0.0043 0.0560
CF 0.3053 0.0896 -0.0074 0.0549
BCF 0.1347 0.0370 0.0045 0.0524

S-Learner 0.4721 0.0333 0.0033 0.0529
T-Learner 0.8052 0.0373 0.0048 0.0568
X-Learner 1.1870 0.0292 0.0048 0.0568

Causal BART 0.9925 0.0164 0.0019 0.0517

Table A.5: Simulation study for HTE estimation, with M = 2 rules, non-linear
confounder, 2,000 individuals and under CATE linear decomposition assumption.
For all the methods, the mean (µ) and standard deviation (σ) treatment effect root
mean squared error (RMSE) and bias (Bias) over 250 Monte Carlo experiments are
reported.

impact the estimation performances, and the results obtained look very similar to
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the ones from the original data-generating process and the randomized controlled
experiment variant. As discussed in Section 4.2, (almost) all the CRE variants sig-
nificantly outperform the corresponding ‘standalone’ ITE estimators in both ITE and
ATE estimation without significantly worsening the performances from the original
data-generating process (with linear confounding), with exceptions of CF and BCF.

In Figure A.10, we report the results for AATEs estimation, with non-linear
confounding. As expected from Proposition B, all the methods lead to consistent
AATEs estimation.
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Figure A.10: Simulation study for HTE estimation, with M = 2 rules, non-linear
confounding and 2,000 individuals. For all the CRE variants, for each rule, the
AATE’s bias over 250 Monte Carlo experiments is reported in a boxplot.
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Appendix B

Deferred Proofs

In this Appendix, we report the proofs of the Propositions presented in Chapter 2
and 3.

Proposition 1. (Linear Decomposition in finite covariate space)

If the covariate space X is finite, then the Treatment Effect linear decomposition
Assumption holds.

Proof. Without loss of generality, we assume that all the covariates are binary:
X = {0, 1}p (the same argument can be used in the discrete case). For all
m ∈ {0, 1, 2, 3, ...2p − 1} let xm = (b1, b2, ..., bp) ∈ X , where b1b2...bp is the represen-
tation of m in base 2, adding zeros on the left if less then p digits are required. For
example x2 = (0, 0, ..., 0, 1, 0), x6 = (0, 0, ..., 0, 1, 1, 0) and x2p−1 = (1, 1, ..., 1, 1, 1, 1).

Since, by construction, X = ∪2p−1
m=0{xm}, the (centered) Conditional Average

Treatment Effect can be dummy decomposed in 2p point-wise contributions:

τ(x)− τ̄ =

2p−1∑
m=0

τ(xm) · 1xm(x)

=

2p−1∑
m=0

αm · rm(x)

(B.1)

Proposition 2. (Consistency of the AATE estimator)

Let τ̂ a consistent estimator for τ (i.e., AIPW). Under the Treatment Effect linear
decomposition Assumption (Condition 1) and assuming E(RTR) = Q is a positive
definite matrix (Condition 2), the Additive Average Treatment Effects estimator
α̂ = (RTR)−1RT (τ̂ − ˆ̄τ) is a consistent estimator for α.
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Proof. Multiplying Equation 3.25 (Condition 1) on the both sides by (RTR)−1RT ,
we get:

(RTR)−1RT (τ̂ − ˆ̄τ) = (RTR)−1RTRα+ (RTR)−1RTν. (B.2)

Using Equation 3.26, and simplifying the right member:

→ α̂ = α+ (RTR)−1RTν. (B.3)

Observing that by Condition 2 and the Law of large numbers:

RTR

N
=

1

N

N∑
i=1

RT
i ·Ri

d→ Q ≻ 0, (B.4)

where Ri represents the i-th row of the rules matrix, and:

RTν

N
=

1

N

N∑
i=1

RT
i · νi

d→ 0; (B.5)

combining them in Equation B.3 (simplifying N), by Slutsky’s theorem:

α̂
d→ α (B.6)

Proposition 3. (Asymptotic Normality of the AATE estimator)

If Conditions (1)-(5) hold, then

√
N(α̂−α)

d→ N (0, V ) as N → ∞ (B.7)

where V = Q−1ΩQ−1.

Proof. Similarly to the proof of Proposition 2, multiplying Equation 3.25 (Condition
1) on the both sides by (RTR)−1RT , and inserting Equation 3.26, we get:

α̂ = α+ (RTR)−1RTν. (B.8)

Multiplying both sides by
√
N and rearranging we get:

√
N(α̂−α) =

(
RTR

N

)−1
RTν√
N

=

(∑N
i=1R

T
i Ri

N

)−1 ∑N
i=1R

T
i νi√

N

By hypothesis:
E[Riνi] = 0 ∀i ∈ Ie (B.9)
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and:

Var(Riνi) = E[ν2i RT
i Ri]− E[Riνi]

2

& = E[ν2i RT
i Ri] = Ω ≻ 0 ∀i ∈ Ie

(B.10)

Then, by the Central Limit Theorem:∑N
i=1R

T
i νi

N

d→ N (0,Ω). (B.11)

We have already discussed in the proof of Proposition 2 that:

RTR

N
=

1

N

N∑
i=1

RT
i ·Ri

d→ Q ≻ 0. (B.12)

Then, combining these results in Equation B.9, by Slutsky’ theorem and Cramer-
Wold theorem: √

N(α̂−α)
d→ N (0, Q−1ΩQ−1) as N → ∞ (B.13)
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